this post was submitted on 11 Dec 2023
239 points (87.2% liked)
Technology
59551 readers
3425 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
So it's not like: when I affect the hue (some attribute) of my half, the other half will change too? That has always been my understanding of it
No, measuring one particle collapses the entanglement and they no longer affect each other. It is a one time thing. You can't modify them after they have been observed.
So at best it can be used for unpredictable coordination between vastly-spaced armies.
Nope. Because you don't know when it will collapse,. Imagine you have 2 balls, a red and a blue. They are both put in boxes and each ship takes 1 box. After you travel a long distance you open your box. You have just collapsed the "superposition" of what color the balls were. You now know what color both balls are, but you don't know if the other person has looked in their box yet.
I think a lot of people get confused by the term "observe" when talking about collapsing quantum uncertainty. Observing requires a photon to interact with the particle which is what caused it to "choose" what state it is in.