Basically... A lot! Just to have what effectively amounts to a painkiller. Now don't get me wrong, those are great but you know what's better? Solving the issue that causes you pain to begin with.
Technology
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
Hmm ...what about continuing to go on benders every night and not addressing the problem at all? Would that be bad?
I know something better and it's solar powered: Trees!
Trees are great for other reasons, but they grow far too slow to capture significant carbon. The fastest natural carbon sinks are algae.
But think of all the space that would take! If you replant forests where are we going to put our superhighways and parking lots?
At this point, we need to do both
None. They are called trees. We should stop wrecking things.
To be fair trees still use energy for doing this, but that energy is conveniently provided by the sun.
If humans could make a profit off of killing the sun, they would.
We should try with solar farms
How does that destroy the sun? Unless I have the wrong idea of what a solar farm is. I'm imagining a big ol' flat farmland in the middle of kansas with thousands of solar panels.
By stealing its photons!
(it's a joke)
Algae does it for free all the time. Physically trying to capture carbon dioxide is dumbassery. We need more investment in algae production.
It could be beneficial for densely populated areas, though. Because you have predictable airflow and low-hanging regions to implement physical capture and sequestering. We can do more than one thing at a time and targeted approaches combined with generalized approaches will yield faster results.
In order for that we need more renewable energy, otherwise we're just burning fossil fuel, producing carbon dioxide, and then capturing it. Solar, wind, algae biofuel, renewable diesel, green hydrogen, etc. We have to be careful how we use energy otherwise we're just producing carbon dioxide to capture carbon dioxide.
People keep complaining that solar and wind give us “too much electricity at the wrong time”, causing power prices to go negative (as if this is a problem). Having a beneficial process like co2 removal that you can do at any time of day (the co2 isn’t going anywhere) that would soak up all that energy seems like a win win.
Yea, and one of the best ways to sequester carbon dioxide is by using algae. Algae biofuels are a great way out of the climate crisis. Use excess energy to produce algae biofuel, net negative emissions.
Looks at US corn production for ethanol 👀
Yea that's an example of greenwashing.
Algae doesn't capture it for long. Trees do it for longer but not long enough to be more then a speed bump. Unless we start dumping algae and trees into giant pits and sealing them up three is no long term carbon capture.
Biochar (created in a retort) is how you sustainably sequester carbon for the long-term using trees (and similar biomass).
Techbros were pitching how we'd invent self replicating carbon capture nano machines in the future
If we wanted to remove enough CO2 to get back to the preindustrial level of 280 ppm, it would take 2.39 x 10^20 joules of energy. For a reality check, that's almost as much as the world's total annual energy consumption (5.8 x 10^21 joules every year).
Isn't that over an order of magnitude difference? What am I missing? How is that "almost as much"?
Yep, it's close to 4% of the total. Not really "almost as much".
That's honestly pretty good, I can see world leaders coming together and just doing that. There must be other technical challenges to this other than raw power usage
I don't know much about the technology, so I can't comment on that. But I don't really see politicians pushing for this, at least not succesfully. There are too many rightwing obstructionists in most Western governments right now...
I'm guessing they don't understand scientific notation, and "numbers are close" without understanding the numbers are much more significant
even if 10^20 was almost 10^21 (which is isn't) 2.39 is not almost 5.8. It's less than half!
Why do we listen to people who do not know what the fuck they are talking about? Have we lost our ability to know who is, and is not, completely full of shit?
This is why STEM education is important. You clearly learned from yours and that's awesome!
The problem is that this is a theoretical minimum, not an actual, proposed process. We'd need a way to attract CO2 to separate it from the rest of the air, and afaik that doesn't exist. Any actual process is likely to be far less than 100% efficient, probably an order of magnitude or more less.
This is an example of a real proposal, but I have no idea how efficient it is. It would be a lot more helpful if this article provided a realistic example instead of some back-of-the-napkin math.
Oh yeah, I agree it's super inefficient currently. But if the theoretical 100% efficient process is 5% of our current yearly energy expenditure, that sounds promising and suggests we shouldn't just write off the idea.
Exactly. I want to see some investment into CO2 removal. If that's cheaper than retooling everything, we should do it. If it's not, we should do a little bit of it to help remove the negatives of climate change as we transition to a more responsible society.
I say we tax carbon emissions at around the theoretical removal cost, and then use some of that to invest in removal tech.
Carbon capture makes much more sense directly on smokestacks and other industry waste outputs, but then how do businesses make taxpayers fund it?
Idk, I just feel like it’s 1. A cop out. We need to reduce emissions and not put our eggs in one basket. And 2. In its infancy. The tech isn’t efficient enough yet to be rolled out imo
I think we should pursue it for the future, but it shouldn't be taking funding that could be used for more immediate solutions or used as a distraction / delay tactic (although of course it will).
Preventing additional carbon emissions doesn't decrease what's already in the atmosphere. We would need some form of carbon capture even if we stopped all emissions today.
TL;DR: the total energy produced by humanity in a year.
Or if you want to do it in let's say 20 years, 5% of the total power output.
That doesn't sound too bad.
Technically yes, but politicians start freaking out as it would lower GDP a few percent too.
I think the technical term is: But muh ecomnomie!
They're going to say that anyway when the real cost of warming hits. Calculation about that says GDP -30% to -50%. But that's for the next legislature I guess.
Yes, for politicians the cost is always lower to kick the can into the next administration's term. Unfortunately it becomes more and more expensive for the rest of us.
In the end, they'll have kicked so many cans down the road that the huge pile is blocking the way.
It's way less than that. 2.39x10^20 is around 4% of 5.8x10^21. Not even close to "almost as much". Looks like the authors don't know their powers of 10. So if we dedicate 5% of the total energy for one year it could theoretically be done.
Assuming a 100% efficient CO2 capture system...
Here's an actual carbon capture system, I have mo idea how efficient or practical it is.
It depends on the method. IIRC, the most cost effective methods cost more than leaving it there. The real problem really is figuring out how to make a profit off it. Without the government forcing it subsidizing it, nobody will do it, even sustainably, in volume enough to matter.
That's what the article theoretically exemplifies, avoiding emission in the first place is the best bet.
Targeting the preindustrial level of atmospheric CO2 is such an ambitious target, trying to undo 300 years of emissions. Then again, it's not like we've stopped emitting.
If we instead try to calculate the energy requirements to simply offset the average emissions of that particular year, using this formula of 652 kJ/kg CO2, and average annual CO2 emissions, against the current numbers of about 37 billion tonnes, or 37,000,000,000,000 kg, we have 2.4 x 10^16 kJ, or 2.4 x 10^19 joules. Which converts to 6.7 x 10^12 kWh, or 6,700 TWh.
Total annual US electricity generation is about 4700 TWh per year.
Global electricity generation is about 25000 TWh per year, about 40% of which is from low or zero carbon sources.
So basically if we've got 6700 TWh of clean energy to spare, it would be more effective to steer that into replacing fossil fuels first, and then once we hit a point of diminishing returns there, explore the much less efficient options of direct capture for excess energy we can't store or transport. Maybe we'll get there in a decade or two, but for now it doesn't make any sense.
Actually a thorough article from Wired. Oh...written by an Associate Professor, that's why.