this post was submitted on 26 Jun 2024
44 points (100.0% liked)

Technology

60055 readers
3410 users here now

This is a most excellent place for technology news and articles.


Our Rules


  1. Follow the lemmy.world rules.
  2. Only tech related content.
  3. Be excellent to each another!
  4. Mod approved content bots can post up to 10 articles per day.
  5. Threads asking for personal tech support may be deleted.
  6. Politics threads may be removed.
  7. No memes allowed as posts, OK to post as comments.
  8. Only approved bots from the list below, to ask if your bot can be added please contact us.
  9. Check for duplicates before posting, duplicates may be removed

Approved Bots


founded 2 years ago
MODERATORS
 

cross-posted from: https://lemmy.ca/post/23884006

Link to full text study:

https://www.thelancet.com/journals/landig/article/PIIS2589-7500(24)00094-3/fulltext

Background Cooling towers containing Legionella spp are a high-risk source of Legionnaires’ disease outbreaks. Manually locating cooling towers from aerial imagery during outbreak investigations requires expertise, is labour intensive, and can be prone to errors. We aimed to train a deep learning computer vision model to automatically detect cooling towers that are aerially visible.

Methods Between Jan 1 and 31, 2021, we extracted satellite view images of Philadelphia (PN, USA) and New York state (NY, USA) from Google Maps and annotated cooling towers to create training datasets. We augmented training data with synthetic data and model-assisted labelling of additional cities. Using 2051 images containing 7292 cooling towers, we trained a two-stage model using YOLOv5, a model that detects objects in images, and EfficientNet-b5, a model that classifies images. We assessed the primary outcomes of sensitivity and positive predictive value (PPV) of the model against manual labelling on test datasets of 548 images, including from two cities not seen in training (Boston [MA, USA] and Athens [GA, USA]). We compared the search speed of the model with that of manual searching by four epidemiologists.

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 10 points 6 months ago

It’s straight from the paper, seems typical for a peer reviewed scientific paper title