this post was submitted on 05 Jan 2024
221 points (96.6% liked)
Technology
59398 readers
2541 users here now
This is a most excellent place for technology news and articles.
Our Rules
- Follow the lemmy.world rules.
- Only tech related content.
- Be excellent to each another!
- Mod approved content bots can post up to 10 articles per day.
- Threads asking for personal tech support may be deleted.
- Politics threads may be removed.
- No memes allowed as posts, OK to post as comments.
- Only approved bots from the list below, to ask if your bot can be added please contact us.
- Check for duplicates before posting, duplicates may be removed
Approved Bots
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
There are barriers to suddenly having sub 7nm chip production. The EUV etching laser setup is hundreds of millions of dollars per machine and are made by one country - The Netherlands - who are aligned with American and NATO trade ideals.
The issue also isn't getting one; maintenance and software are required for each machine and are also strictly guarded. It's why places like China and NK don't have advanced chips but have rocket programs. It's gatekeeping their progress.
Taiwan literally bet it's future as a country on advanced technology and it paid off, probably the only one that did. SK has chaebols to soak up the cost and Samsung did exactly that with the help of the government in the 80s to compete with Japanese DRAM. It worked so well Japan stopped making most chips and SK took over.
USSR, India, Germany, America, Japan, Bulgaria, Vietnam, etc. have tried to start advanced chips technology centers but it doesn't succeed for nmone reason or another, typically due to the long time frame and high costs making it unsustainable.
Edit: it's worth noting that China is trying to make the investment and there may be some gains but etching accurate circuit paths at that level of detail (with multiple passes that exponentially explode complexity) without EUV lithography is nigh impossible. Currently they are at 20nm reliably and it puts them around 10 years behind current mainstream computing. (An equivalent is the 22nm chips from 2008.)
Very interesting, thank you.