Technology
This is the official technology community of Lemmy.ml for all news related to creation and use of technology, and to facilitate civil, meaningful discussion around it.
Ask in DM before posting product reviews or ads. All such posts otherwise are subject to removal.
Rules:
1: All Lemmy rules apply
2: Do not post low effort posts
3: NEVER post naziped*gore stuff
4: Always post article URLs or their archived version URLs as sources, NOT screenshots. Help the blind users.
5: personal rants of Big Tech CEOs like Elon Musk are unwelcome (does not include posts about their companies affecting wide range of people)
6: no advertisement posts unless verified as legitimate and non-exploitative/non-consumerist
7: crypto related posts, unless essential, are disallowed
view the rest of the comments
Interesting, in this particular case it's implementing a single operation, but I can imagine they can implement other single operation dedicated chips as well. So I'd expect ASICs but no CPUs
https://actu.epfl.ch/news/redefining-energy-efficiency-in-data-processing/
Still, i don't think it'll need to get much more complex to be very useful for AI workloads.
People have been discovering that more, and simpler, calculations seem to work better? the trend in AI workloads seems to have gone from FP32 -> FP16 -> INT16 -> INT8 and possibly even INT4?
Seems like just having lots of simple calculations is more efficient/effective than more complex stuff.
Well these chips perform analog math, which means high precision high speed. It's not as accurate as fp32 as in repeatedly and deterministic outputs, but that's def not a problem for a deep and wide neural network such as used by llm