this post was submitted on 02 Dec 2024
154 points (98.1% liked)

Science Memes

11441 readers
1557 users here now

Welcome to c/science_memes @ Mander.xyz!

A place for majestic STEMLORD peacocking, as well as memes about the realities of working in a lab.



Rules

  1. Don't throw mud. Behave like an intellectual and remember the human.
  2. Keep it rooted (on topic).
  3. No spam.
  4. Infographics welcome, get schooled.

This is a science community. We use the Dawkins definition of meme.



Research Committee

Other Mander Communities

Science and Research

Biology and Life Sciences

Physical Sciences

Humanities and Social Sciences

Practical and Applied Sciences

Memes

Miscellaneous

founded 2 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 12 points 3 weeks ago (1 children)
[–] [email protected] 30 points 3 weeks ago* (last edited 3 weeks ago)

I'ma gonna save y'all from downloading a pdf.

Abstract. Diamagnetic objects are repelled by magnetic fields. If the fields are strong enough, this repulsion can balance gravity, and objects levitated in this way can be held in stable equilibrium, apparently violating Earnshaw’s theorem. In fact Earnshaw’s theorem does not apply to induced magnetism, and it is possible for the total energy(gravitational + magnetic) to possess a minimum. General stability conditions are derived, and it is shown that stable zones always exist on the axis of a field with rotational symmetry, and include the inflection point of the magnitude of the field. For the field inside a solenoid, the zone is calculated in detail; if the solenoid is long, the zone is centred on the top end, and its vertical extent is about half the radius of the solenoid. The theory explains recent experiments by Geim et al, in which a variety of objects (one of which was a living frog) was levitated in a field of about 16 T. Similar ideas explain the stability of a spinning magnet (LevitronTM) above a magnetized base plate. Stable levitation of paramagnets is impossible.