this post was submitted on 28 Nov 2024
80 points (100.0% liked)

Asklemmy

44357 readers
1012 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy ๐Ÿ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_[email protected]~

founded 5 years ago
MODERATORS
 

Recently downloaded the phyphox from F-Droid and thought about this while thinking about what all stuff I could do with it.

Are there any online resources about such stuff?

What all things have you(or people you know, in your locality etc) done along that line?
And not only big thigs, if you're tracking other stuff, please do share your experience on that too.

Edit:
Sharing the github page of the app too:
https://github.com/phyphox/phyphox-android

you are viewing a single comment's thread
view the rest of the comments
[โ€“] [email protected] 5 points 1 month ago (2 children)

Of course!

I wanted to test whether a cheap piezo buzzer could be used as a crude ultrasound probe. It worked, so I tried to upgrade it into full-blown ultrasound imaging. The third iteration of that did produce an image, using a piezo buzzer cut in sections, a cheap FPGA, a MCU, custom PCB and mostly 3D printed pieces (acoustic lens, etc.). Aside from the expected low resolution, turned out that it wouldn't image anything beyond about 1 cm.

I did make a fourth iteration of the device, much smaller and theoretically much better. But life happened and I never finished the coding part.

[โ€“] [email protected] 3 points 1 month ago (1 children)

A DIY superficial USG could be super useful for emergency lung imaging in low resource centers, if you ever want to keep that project up! Check out BLUE protocol by Lichtenstein et al

[โ€“] [email protected] 2 points 1 month ago

I fully intend to go on with the project! Right now it's not good enough to be interesting, but the results so far are too promising to not give it a chance.

[โ€“] [email protected] 3 points 1 month ago* (last edited 1 month ago) (1 children)

congrats on the excellent project.

how many pieces of the piezo and which frequency of operation did you use?

how did you design/source the acoustic lens design?

seriously well done!!

[โ€“] [email protected] 2 points 1 month ago

Thank you! :)

I managed to get 4 piezo elements to work, limited by the FPGA. This was actually enough for some reasonable horizontal resolution since I used a phase array configuration, so the downside was the electronics had to generate very precisely timed pulses. The fourth prototype had 10 working elements thanks to replacing the MCU-FPGA duo with just a more powerful FPGA and using conductive glue to more reliably connect the elements themselves.

It was configurable to use any even divisor of 120 MHz, but in practice anything over 1 MHz would not even make it out of the acoustic lens due to the low voltage and low quality impedance matching layer. And much lower frequencies are barely useful anyways, so the true working range was narrow.

For the acoustic lens, I used the parametric design software OpenSCAD, with an equation for aberration-free lenses I had found somewhere and saved long before (will find it if you want) and the speed of sound in the different materials.