Selfhosted
A place to share alternatives to popular online services that can be self-hosted without giving up privacy or locking you into a service you don't control.
Rules:
-
Be civil: we're here to support and learn from one another. Insults won't be tolerated. Flame wars are frowned upon.
-
No spam posting.
-
Posts have to be centered around self-hosting. There are other communities for discussing hardware or home computing. If it's not obvious why your post topic revolves around selfhosting, please include details to make it clear.
-
Don't duplicate the full text of your blog or github here. Just post the link for folks to click.
-
Submission headline should match the article title (don’t cherry-pick information from the title to fit your agenda).
-
No trolling.
Resources:
- selfh.st Newsletter and index of selfhosted software and apps
- awesome-selfhosted software
- awesome-sysadmin resources
- Self-Hosted Podcast from Jupiter Broadcasting
Any issues on the community? Report it using the report flag.
Questions? DM the mods!
view the rest of the comments
Buy recertified enterprise grade disks from https://serverpartdeals.com. Prices were around $160/16TB the last time I checked. Mix brands and models to reduce simultaneous failure. Use more than 1-disk redundancy. If you can't buy from SPD, either find an alternative or buy external drives and shuck them. Use ZFS to know if your data is correct. I've been dealing with funny AMD USB controllers recently and the amount of silent data corruption I'd have gotten if not for ZFS is ridiculous.
Yep, I have 6 14tb drives from them in raid10.
Three-way mirror?
I would not trust these kind of dives in the mirror. IMHO RAID6 is the only way.
Due to risk of failure or risk of data corruption because the mirror can't tell which drive is right when there's a difference?
ZFS or BTRF mirror will know which side is at fault due to checksums. I'm more concern about simultaneous falures of two disks. Rebuilding of a RAID puts lots of pressure on remaining disks, so probability that remaining one dies too is much higher. with RAID6 3 disks need to die to lost date, which is less likely but not impossible.
The second one.
Mirroring is good for speed, but a storage mechanism with parity checks will always be more recoverable. And you will have far more storage available.
I think data checksums allow ZFS to tell which disk has the correct data when there's a mismatch in a mirror, eliminating the need for 3-way mirror to deal with bit flips and such. A traditional mirror like mdraid would need 3 disks to do this.
Or SnapRaid