this post was submitted on 06 Jan 2024
289 points (86.4% liked)

memes

10223 readers
1788 users here now

Community rules

1. Be civilNo trolling, bigotry or other insulting / annoying behaviour

2. No politicsThis is non-politics community. For political memes please go to [email protected]

3. No recent repostsCheck for reposts when posting a meme, you can only repost after 1 month

4. No botsNo bots without the express approval of the mods or the admins

5. No Spam/AdsNo advertisements or spam. This is an instance rule and the only way to live.

Sister communities

founded 1 year ago
MODERATORS
 

I considered deleting the post, but this seems more cowardly than just admitting I was wrong. But TIL something!

you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] 2 points 10 months ago* (last edited 10 months ago) (17 children)

Not quite because it's easily shown that the set of all real numbers contains the set of all real numbers between 0-1, but the set of all real numbers from 0-1 does not contain the set of all real numbers. It's like taking a piece of an infinite pie: the slice may be infinite as well, but it's a "smaller" infinite than the whole pie.

This is more like two infinite hoses, but one has a higher pressure. Ones flowing faster than the other, but they're both flowing infinitely.

[–] [email protected] 4 points 10 months ago (3 children)

actually you can for each real number you can exhaustively map a uninque number from the interval (0,1) onto it. (there are many such examples, you can find one way by playing around with the function tanx)

this means these two sets are of the same size by the mathematical definition of cardinality :)

[–] [email protected] -1 points 10 months ago (2 children)

You mean integers and real numbers between 0 and 1.

All real numbers would start at 0, 0.1, 0.001, 0.0001.... (a 1:1 match with the set between 0 and 1) all the way to 1, 1.1, 1.01.... Etc.

[–] [email protected] 4 points 10 months ago

no, there aren't enough integers to map onto the interval (0,1).

probably the most famous proof for this is Cantor's diagonalisation argument. though as it usually shows how the cardinality of the naturals is small than this interval, you'll also need to prove that the cardinality of the integers is the same as that of the naturals too (which is usually seen when you go about constructing the set of integers to begin with)

load more comments (1 replies)
load more comments (1 replies)
load more comments (14 replies)