this post was submitted on 07 Dec 2023
537 points (87.7% liked)

Asklemmy

43846 readers
698 users here now

A loosely moderated place to ask open-ended questions

Search asklemmy πŸ”

If your post meets the following criteria, it's welcome here!

  1. Open-ended question
  2. Not offensive: at this point, we do not have the bandwidth to moderate overtly political discussions. Assume best intent and be excellent to each other.
  3. Not regarding using or support for Lemmy: context, see the list of support communities and tools for finding communities below
  4. Not ad nauseam inducing: please make sure it is a question that would be new to most members
  5. An actual topic of discussion

Looking for support?

Looking for a community?

~Icon~ ~by~ ~@Double_[email protected]~

founded 5 years ago
MODERATORS
 
you are viewing a single comment's thread
view the rest of the comments
[–] [email protected] -2 points 7 months ago (18 children)

Please learn some math

I'm a Maths teacher - how about you?

Quoting yourself as a source

I wasn't. I quoted Maths textbooks, and if you read further you'll find I also quoted historical Maths documents, as well as showed some proofs.

I didn't say the distributive property, I said The Distributive Law. The Distributive Law isn't ax(b+c)=ab+ac (2 terms), it's a(b+c)=(ab+ac) (1 term), but inaccuracies are to be expected, given that's a wikipedia article and not a Maths textbook.

I did read the answers, try doing that yourself

I see people explaining how it's not ambiguous. Other people continuing to insist it is ambiguous doesn't mean it is.

[–] [email protected] 2 points 7 months ago (12 children)

About the ambiguity: If I write f^{-1}(x), without context, you have literally no way of knowing whether I am talking about a multiplicative or a functional inverse, which means that it is ambiguous. It's correct notation in both cases, used since forever, but you need to explicitly disambiguate if you want to use it.

I hope this helps you more than the stackexchange post?

[–] [email protected] -1 points 7 months ago (11 children)

If I write f^{-1}(x), without context, you have literally no way of knowing whether I am talking about a multiplicative or a functional inverse, which means that it is ambiguous

The inverse of the function is f(x)^-1. i.e. the negative exponent applies to the whole function, not just the x (since f(x) is a single term).

[–] [email protected] 2 points 7 months ago* (last edited 7 months ago) (1 children)

You can define your notation that way if youlike to, doesn't change the fact that commonly f^{-1}(x) is and has been used that way forever.

If I read this somewhere, without knowing the conventions the author uses, it's ambiguous

[–] [email protected] -2 points 7 months ago (1 children)

You can define your notation that way if you like

Nothing to do with me - it's in Maths textbooks.

without knowing the conventions the author uses, it’s ambiguous

Well they should all be following the rules of Maths, without needing to have that stated.

[–] [email protected] 1 points 7 months ago (1 children)

Exactly! It's in math textbooks, in both ways! Ambiguous notation, one might say.

[–] [email protected] -2 points 7 months ago (1 children)

Exactly! It’s in math textbooks, in both ways!

And both ways are explained, so not ambiguous which is which.

[–] [email protected] 1 points 7 months ago* (last edited 7 months ago) (1 children)

Yeah, doesn't mean that you know what an author is talking about when you encounter it doing actual math

The notation is not intrinsically clear, as any human writing. Ambiguous, one may say.

[–] [email protected] -2 points 7 months ago (1 children)

The notation is not intrinsically clear

It is to me, I actually teach how to write it.

[–] [email protected] 1 points 7 months ago (1 children)

We've been at this point, I'm not going to explain this again. But you weren't able to read a single sentence of a wikipedia article without me handfeeding it to you, so I guess I shouldn't be surprised. I'm sorry for your students.

[–] [email protected] -2 points 7 months ago (1 children)

a single sentence of a wikipedia article without me handfeeding it to you

And I told you why it was wrong, which is why I read Maths textbooks and not wikipedia.

I’m sorry for your students

My students are doing good thanks

[–] [email protected] 1 points 7 months ago (1 children)

Apparently you can't read either textbooks or wikipedia and understand it.

Also, wait, you're just a tutor and not actually a teacher? Being wrong about some incredibly basic thing in your field is one thing, but lying about that is just disrespectful, especially since you drop that in basically every sentence.

[–] [email protected] -2 points 7 months ago (1 children)

you’re just a tutor and not actually a teacher?

Both - see the problem with the logic you use?

Let me know when you decide to consult a textbook about this.

[–] [email protected] 1 points 7 months ago* (last edited 7 months ago)

I'm not using logic in this case, you are just being insincere. Let me know when you bother to try to understand anything I or the authors of your holy textbooks wrote.

load more comments (9 replies)
load more comments (9 replies)
load more comments (14 replies)