this post was submitted on 17 Jul 2024
253 points (93.2% liked)
Showerthoughts
29786 readers
430 users here now
A "Showerthought" is a simple term used to describe the thoughts that pop into your head while you're doing everyday things like taking a shower, driving, or just daydreaming. A showerthought should offer a unique perspective on an ordinary part of life.
Rules
- All posts must be showerthoughts
- The entire showerthought must be in the title
- Avoid politics
- 3.1) NEW RULE as of 5 Nov 2024, trying it out
- 3.2) Political posts often end up being circle jerks (not offering unique perspective) or enflaming (too much work for mods).
- 3.3) Try c/politicaldiscussion, volunteer as a mod here, or start your own community.
- Posts must be original/unique
- Adhere to Lemmy's Code of Conduct
founded 1 year ago
MODERATORS
you are viewing a single comment's thread
view the rest of the comments
view the rest of the comments
If you're looking for a proof:
Our base 10 system represents numbers by having little multipliers in front of each power of 10. So a number like 1234 is 1 x 10^3 + 2 x 10^2 + 3 x 10^1 + 4 x 10^0 .
Note that 10 is just (3 x 3) + 1. So for any 2 digit number, you're looking at the first digit times (9 + 1), plus the second digit. Or:
(9 times the first digit) + (the first digit) + (the second digit).
Well we know that 9 times the first digit is definitely divisible by both 3 and 9. And we know that adding two divisible-by-n numbers is also divisible by n.
So we can ignore that first term (9 x first digit), and just look to whether first digit plus second digit is divisible. If it is, then you know that the original big number is divisible.
And when you extend this concept out to 3, 4, or more digit numbers, you see that it holds for every power of 10, and thus, every possible length of number. For both 9 and 3.